
MESSINA Tutorial

2
4
4
4
6
9

12
12
14
17
17
19
19
21
21
22
24
24
27
29
30
30
34
34
34
35
35
39
39
40
40
42
42
43
43
45
47
48
48
49
51
53
53
53
54
55
56
56
58
58
62
63

Inhaltsverzeichnis

Inhaltsverzeichnis
Tutorial

Example: Temperature Compensation
Test Case Description

Step 1 - Prepare the Test
Step 2 - Create New Project
Step 3 - Add Model and Configuration

Add a System Configuration to the Testenvironments
Add a Matlab/Simulink Model to the Configuration

Step 4 - Adding Signals to the Signalpool
Add Signals to the Signalpool

Step 5 - Add, Configure and Start a Target
Add and Configure a Target

Step 6 - Add a Visualization and Test Model
Add a Table Viewer Visualization
Testing the TempComp Model

Step 7 - Add a Control Panel Visualization
Add a Control Panel Visualization
Connect Signals to the Elements
Testing the TempComp Model

Step 8 - Create and Program a Test Case
Add a Test Case
About the preCondition and postCondition
What do we want to do?
Programming the preCondition Function
Programming the run Function
Programming the postCondition Function

Step 9 - Execute the Test Case
Execution of a Test Case - Table View
Execution of a Test Case - Control Panel Graph
What do we see?

Step 10 - Create a Campaign and Add Parameters
Add a Campaign
Adding Test Cases to the Campaign
Adding Project Parameters
Setting Parameters for a Campaign
Modify the Test Case to use Parameters
Programming the preCondition Function
Modifying the run Function to use Parameters
Programming the postCondition Function
Setting Parameters for Each Test Case

Step 11 - Execute the Campaign
What do we have?
Execution of a Campaign - Table View
Execution of a Campaign - Control Panel Graph
What do we see?

Step 12 - The Result Manager
The Result Manager

Step 13 - Test Results and Signal Traces
Test Results

Step 14 - The Log View and Log Levels
Log Levels

MESSINA Tutorial

Assystem Germany GmbH Page 2 of 69

65
67
67

Log Levels in Test Cases
Step 15 - Test Reports

Test Reports

MESSINA Tutorial

Assystem Germany GmbH Page 3 of 69

Tutorial

Example: Temperature Compensation

The following sections will be used to create an example project to illustrate the various components of
the MESSINA test development environment. Each step of the process will introduce and explain a
MESSINA operation and will build on the previous steps. The test scenario is explained in detail below.

Test Case Description

The sample scenario we will use is a temperature compensation for the outside car temperature. The
temperature is acquired by a sensor and displayed to the driver. The measured temperature is affected
by the speed of the car. To display the real outside temperature this effect must be compensated. An
attenuation will be used to avoid big temperature steps. This calculation would normally be handled
within the functionality of an ECU, but for purposes of illustration we will use a SiL (software in the
loop) model.

The example project for the temperature compensation uses a MATLAB/Simulink model in place of the
ECU functionality and three signals connected to the model's port.

The outside temperature signal from the sensor "ts" is recalculated depending on the vehicle speed (v)
before the actual temperature (ta) is displayed to the driver. The configuration in MESSINA is shown in
the next figure:

MESSINA Tutorial

Assystem Germany GmbH Page 4 of 69

We will use the MESSINA development environment to create and perform tests using the scenario
described above. We will go through the process in small easy to follow steps giving full explanations
as we go along. The following steps will be performed:

setup and prepare the workspace
create a new project
add a model and test configuration
add test signals
add a target and run a first test
add a table view and control panel visualization
create and program a test case
execute the test case
add a campaign and parameters
execute the campaign
view the test results in the Result Manager
examine traces and logging
examine the Log View
examine Test Reports

This example will use a Windows target which is installed automatically with MESSINA.

MESSINA Tutorial

Assystem Germany GmbH Page 5 of 69

Step 1 - Prepare the Test
Several operations must be completed before you can perform the tests described in the temperature
compensation example. These are described in detail below.

MESSINA uses the workspace sub-folder to create a structure for each project. The workspace sub-
folder is located in the installation directory. A typical installation would be

 C:\Programme\Berner_Mattner\MESSINA\workspace\

The project structure is created automatically and contains all information associated with a particular
project.

This example will require that the MESSINA workspace be switched to the tutorial workspace which is
part of the MESSINA installation.

To switch the workspace open the dialog File → Switch Workspace → Other and select the
tutorial_workspace folder in the MESSINA installation directory.

Note: Changing the Workspace will restart MESSINA in the new Workspace.

This tutorial workspace contains all information needed to finish the example. It also contains a
MESSINA project with the completed example. To view this project you must first import the example
project to your current workspace.

MESSINA Tutorial

Assystem Germany GmbH Page 6 of 69

To import the project open the dialog File → Import and select Existing Projects into Workspace
from the General folder and press Next.

Select the project temp_comp in the folder tutorial_workspace in the MESSINA installation folder
and press the Finish button.

Important Note: Be sure that the Copy project into workspace checkbox is checked, otherwise an
error will occur when the configuration is started.

MESSINA Tutorial

Assystem Germany GmbH Page 7 of 69

The project is now visible in your MESSINA workspace.

MESSINA Tutorial

Assystem Germany GmbH Page 8 of 69

Step 2 - Create New Project
This section will describe how to create a new MESSINA project. We will create a project to implement
the temperature compensation example as previously described.

The MESSINA development environment has three standard Perspectives: Designer, Configurator,
and Executor. Switching between these perspectives is done by selecting the appropriate tab at the
top right of the main MESSINA window. Detailed descriptions of these perspectives are provided later
in this documentation. For now, switch to the Configurator perspective to perform the following steps.
This is done using Main Menu → Window → Open Perspective and selecting the Configurator as
shown below.

To create a new project open the dialog File → New → MESSINA Project and enter a name for the
project (e.g. MyFirstProject).

MESSINA Tutorial

Assystem Germany GmbH Page 9 of 69

Note the Support for complex signals checkbox available on the New MESSINA Project dialog box.
Complex signals are either records (groups of signals) or arrays. If these types of signals are required
in the project, this checkbox must be active. Our temperature compensation example does not require
complex signals so the checkbox can remain unchecked.

Press Finish and a new project structure is shown in the Project Explorer. All MESSINA projects use
the same structure as shown below.

The first item in the project structure is the global Signalpool. The Signalpool is one of the most
important features of the MESSINA test environment. It is an active process that runs on the target
system. Each component (e.g. hardware I/Os, models, test cases) is connected via the Signalpool.
Each item in the Signalpool has a unique name, a unit, and a type (e.g. integer, float). Our
temperature compensation example will require that we add several new signals to the Signalpool.
These signals will be connected to a MATLAB/Simulink model.

MESSINA Tutorial

Assystem Germany GmbH Page 10 of 69

The second item in the project structure is the Parameter item. Parameters are used like variables in
a Test Case (test cases are described in detail below). Parameters are a powerful feature of
MESSINA. They can be used to create variations of Test Cases by simply changing their value. This
allows the test designer to create different Test Cases by using a standard test case and varying the
Parameters.

The Test Cases folder in the project structure contains all available test cases which have been
created in the project. A detailed explanation of Test Cases, what they are, and how to create and edit
them is given in the Using MESSINA → Windows & Views → Designer → Test Case Editor
section of this documentation. Our temperature compensation example will require that we add a test
case to the project.

The Campaigns folder contains all available Campaigns which have been created in the project. A
Campaign is a series of Test Cases used to perform specific tests in a defined order. The test cases
are performed in the order they are listed in the Campaign folder.

The Testenvironments folder in the project structure contains the different configurations where the
Test Campaign can run. These could be SiL (software in the loop), or HiL (hardware in the loop). For
our temperature compensation example, we will create a SiL configuration which will be the
Testenvironments used to run the test.

The Visualizations folder in the project structure contains the different visualizations that have been
created in the project. A detailed explanation of Visualizations, what they are, the different types
available, and how to create and edit them is given in the Using MESSINA → Visualizations and
Test Results → Visualizations section of this documentation. Our temperature compensation
example will require that we add visualizations to the project.

The Signal Traces folder in the project structure contains a list of all available signal trace files. A
detailed explanation of signal traces, what they are, and how to create them is given in the Using
MESSINA → Visualizations and Test Results → Test Results → Traces and Logging section of
this documentation.

The Test Results folder in the project structure contains list of all available result files for the current
project. A detailed explanation of Test Results is given in the Using MESSINA → Visualizations and
Test Results → Test Results → Test Reports section of this documentation.

MESSINA Tutorial

Assystem Germany GmbH Page 11 of 69

Step 3 - Add Model and Configuration
This step shows how to add a system configuration to the Testenvironments of the project. We will
also learn how to use the Library Explorer to import an existing Matlab/Simulink model into this
configuration.

Add a System Configuration to the Testenvironments

To add models, hardware and signals to the Signalpool we first must add a system configuration to
the project. You can add more system configurations to handle different test scenarios like SiL or HiL.

From the main menu, open the dialog File → New → System Configuration. It is also possible to
open the File → New → Other dialog and select the System Configuration wizard in the MESSINA
folder.

Alternatively, the System Configuration Wizard can be called using the Context Menu → New
Wizards → System Configuration.

MESSINA Tutorial

Assystem Germany GmbH Page 12 of 69

Note: When calling a wizard from the context menu, the desired wizard is not always shown directly.
When this happens you must choose the Other option which opens the Select a Wizard dialog box
shown above.

Enter the configuration name in the following dialog (e.g. XiL):

The Target OS can be selected from the pull-down list. Currently supported target systems are
Windows targets (installed automatically) and VxWorks targets (optional). For our example, select the
Windows target.

Note: The components in the configuration must match the selected target system, in other words only
Windows components can be used in a Windows target configuration and only VxWorks components
can be used in a VxWorks target configuration.

Click on "Next" to edit the System Configuration Scheduling Properties.

MESSINA Tutorial

Assystem Germany GmbH Page 13 of 69

By default the Sample Time is 10.0 ms for Windows target and 1.0 ms for VxWorks target.The
Number of Subframes can be set to a number between 1 and 15.

Note: Start Running is an upcoming feature and checked by default. To ensure a faultless function it
has to remain activated.

Press "Finish" to close the dialog. The new system configuration is shown in the Project Explorer in
the folder Testenvironments.

Add a Matlab/Simulink Model to the Configuration

The ability to reuse existing items available through the Library Explorer is a powerful feature of
MESSINA. Previous test models, models from earlier development and hardware configurations can all
be added to the library and are then available for use in future projects. You can also create your own
test models and add them to the library as required. The following picture shows the Library Explorer
with all hardware items expanded.

Note: This section assumes that a MATLAB/Simulink model called "TempComp" already exists (it has
been previously imported into the MESSINA library). This model is displayed in the Library Explorer
view as shown in the following screen shot. Refer to the section Import Library for more details about
importing a model into the MESSINA library.

MESSINA Tutorial

Assystem Germany GmbH Page 14 of 69

The MATLAB/Simulink model TempComp will be used in our temperature compensation example and
must be added to our project. This model provides us with the functionality required to implement the
temperature compensation operation as described in the previous section. The OS column indicates
for which operating system the model was developed.

The TempComp model is added to the MESSINA configuration by drag-and-drop. To perform this
action, you must be in the Configurator perspective. Mark the TempComp model in the Library
Explorer and drag it to the MESSINA Configuration Manager. Expand the TempComp item in the
Configuration Manager to view all of the ports available in the model.

Note: The Port Manager is now integrated in the Configuration Manager. The properties of the
model can be found in the Properties View.

MESSINA Tutorial

Assystem Germany GmbH Page 15 of 69

Notice that each port has an icon associated with it. These indicate the type of the port (can also be
seen in the Port Type column).

The items listed in this view can be sorted by clicking on the column heading of the desired sort
criteria. For example, to list the ports by Data Type order, click on the Data Type column header. The
ports are sorted in ascending order by their data type. A small arrow in the column header indicates the
sorting order (up arrow for ascending and down arrow for descending order).

MESSINA Tutorial

Assystem Germany GmbH Page 16 of 69

Step 4 - Adding Signals to the Signalpool
The Signalpool is the central point where all MESSINA data is collected and distributed. It is an active
process running on the target operating system. After creating a new MESSINA project, the
Signalpool is empty. Signals that are required for visualization, monitoring, and evaluation must be
added to the Signalpool. The TempComp model that we added in the previous step includes many
different signals. The ones which are interesting for our temperature compensation example project
are: sensor_temp, speed, air_temp and ice_warning. Only these signals need to be added to the
Signalpool.

Add Signals to the Signalpool

Mark the sensor_temp port in the expanded view of the Configuration Manager. Call the Context
Menu → Map To → New Signal. The dialog box shown below is opened.

The pull-down lists for Type and Unit can be used to set the required properties for the signal. The
signal name can be edited, too, if required. For our example, make the settings shown in the picture
above (only the Unit must be changed).

Note: It is not required that the signal name assigned is identical with the port name. The name
assigned here is how the signal will be displayed in the Signalpool Manager.

If all properties are set, press the OK button. The new signal sensor_temp is now shown in the
Signalpool Manager. Notice that the icon assigned to the sensor_temp signal in the Configuration
Manager has now changed (an overlay icon was added). This indicates that the port has been mapped
to the Signalpool and the name and ID of the connected signals are shown in the Mapped to Signal

MESSINA Tutorial

Assystem Germany GmbH Page 17 of 69

column. Perform the same for the speed, air_temp, and ice_warning signals.

The items listed in this view can be sorted by clicking on the column heading of the desired sort
criteria. For example, to list the signals by ID order, click on the ID column header.

Note: There is no Unit for the ice_warning signal because it is a simple boolean value.

MESSINA Tutorial

Assystem Germany GmbH Page 18 of 69

Step 5 - Add, Configure and Start a Target
The MESSINA installation always includes a Windows target. In order to run our test, we need to
connect to a target system. We require a target system with a known IP address to be connected to
our host system. Target Manager settings are done in the Executor perspective, so switch to this
perspective using the tabs in the top right corner of the main MESSINA view.

Add and Configure a Target

The Windows target is always included in the MESSINA installation. Refer to the Target Manager
section of this documentation for detailed information about how to add and configure a target. Make
sure that the Windows target shown is set as the default target. This can be done by selecting the
target, then calling the Context Menu → Set as Default Target. A small overlay icon with a check

mark indicates the currently selected default target.

The target can be connected either by pressing the icon or by calling the Context Menu
→ connect. The Target Manager now looks like the picture below:

One final action is required before the entire process starts. Go back to Project Explorer →
Testenvironments → XiL. The configuration must be started using the Context Menu → Start
Configuration option. The following dialog is called:

MESSINA Tutorial

Assystem Germany GmbH Page 19 of 69

The Target selected from the pull-down list (all available targets are listed) must match the current
target. The Restart Target check box can be left active. Press OK to perform the start configuration
action.

Note: Restart Target does NOT re-boot the VxWorks operating system. Activating this check-box will
restart the model (TempComp) and the Signalpool process running on the target system.

The Start Configuration dialog is called and disappears automatically when the configuration is
completed.

If everything has been connected and started properly, the Target Manager display will now look like
the screenshot below:

Notice that the Signalpool and TempComp objects have a Status of running. Both of these items
are active processes that run directly on the target system after the Configuration is started. In the
next steps we will have a closer look at how the model works and what the results of our Test Case
look like.

MESSINA Tutorial

Assystem Germany GmbH Page 20 of 69

Step 6 - Add a Visualization and Test Model
The previous steps in this tutorial described how to add what we need in order to run a test. Adding a
Visualization to the project will allow us to see what is happening during execution. MESSINA offers
many different types of Visualizations for viewing selected signals. Any signal in the Signalpool can
be added to a Visualization. For our temperature compensation example, we will use a TableView
Visualization to monitor the different signals that we added earlier in this tutorial.

Add a Table Viewer Visualization

MESSINA Visualizations are created and edited using the Executor perspective which can be
selected using the tabs at the top right of the main window. From the main menu, open the dialog File
→ New → Visualization. It is also possible to open the File → New → Other dialog and select the
Visualization wizard in the MESSINA folder.

Alternatively, the Visualization Wizard can be called using the Context Menu → New Wizards →
Visualization.

The following dialog box appears when the Visualization Wizard is called:

The Project pull-down list can be used to select the project where the Visualization is to be created.
All projects listed in the Project Explorer will be available in the pull-down list. The currently active
project is automatically set as the selected item.

MESSINA Tutorial

Assystem Germany GmbH Page 21 of 69

The Visualization Name text box is used to enter the Visualization name. A sample name is always
generated automatically, but this can be changed to any Visualization name that does not already
exist in the project.

Note: Blank spaces are not allowed in the name.

The Type pull-down list can be used to select what type of Visualization will be added to the project.
Select the Table Viewer visualization. A detailed description of all visualizations can be found in the
Using MESSINA → Visualizations and Test Results → Visualizations → Table Displays section
of this documentation.

Enter MyTableViewer and press Finish to create the Visualization.

The newly created Visualization is added to the Executor view, but it is empty (there are no signals
to view). Signals are added to the visualization using drag-and-drop. Mark the sensor_temp signal
(either in the Project Explorer or the Signalpool Manager) and drag it to the Visualization view. Do
the same for the speed, air_temp, and ice_warning signals. The Visualization view should now look
like this:

The items listed in this view can be sorted by clicking on the column heading of the desired sort
criteria. For example, to list the signals by ID order, click on the ID column header.

Testing the TempComp Model

We can examine the operation of the TempComp model by directly modifying the speed and

sensor_temp input signals. Connect the Table View visualization by pressing the icon. Make
sure the target is connected, and then start the configuration as we did in the last step.

Double click the sensor_temp signal in the MyTableViewer view (Table Display visualization)
created earlier. The following dialog box appears:

MESSINA Tutorial

Assystem Germany GmbH Page 22 of 69

Enter a New Value (e.g. 40.0 as shown) and press the OK button. Wait until the air_temp signal
reaches 40.0. Then double click the speed signal and enter another New Value (e.g. 95) and press
the OK button. The Table View visualization should now look like this:

Notice that the air_temp value is not the same as the sensor_temp value. The model has
compensated the air_temp value based on the speed value that we entered earlier. Try entering
different speed values to confirm that the compensation is working. A higher compensation effect is
visible for higher speeds and a lower compensation effect at lower speeds.

Our temperature compensation example is now functioning properly. In the following section we will
show you another way to view the operation of the TempComp model.

MESSINA Tutorial

Assystem Germany GmbH Page 23 of 69

Step 7 - Add a Control Panel Visualization
In this section we will take a close look at the Control Panel visualization. We will use this to attach
to the signals of the MATLAB/Simulink model and use some of the elements available to control the
operation of the model. We will run the model and use the control panel elements that we will add to
see how the model reacts. For a detailed description of Control Panels, refer to the Using MESSINA
→ Views → Visualizations and Test Results → Visualizations → Control Panel section of this
documentation.

Add a Control Panel Visualization

MESSINA Visualizations are created and edited using the Executor perspective which can be
selected using the tabs at the top right of the main window. From the main menu, open the dialog File
→ New → Visualization. It is also possible to open the File → New → Other dialog and select the
Visualization Wizard in the MESSINA folder.

Alternatively, the Visualization Wizard can be called using the Context Menu → New Wizards
→ Visualization.

The following dialog box appears when the Visualization Wizard is called:

Enter MyControlPanel and press Finish to create the Visualization.

The newly created Visualization is shown, but it is empty. Press the icon at the top of the

MESSINA Tutorial

Assystem Germany GmbH Page 24 of 69

visualization view to enter the Edit Mode. The view should now look like this:

This visualization gives you the ability to design your own control panel. The available elements are
listed down the left side of the view. Our goal here is to select the elements we need in order to do the
following:

change the value of the speed signal
change the value of the sensor_temp signal
display the air_temp signal
display the ice_warning signal
plot a graph of air_temp vs speed over time

In other words what we did in the previous step using the Table View visualization is what we want to
do here with Control Panel elements.

Add the following elements to the Control Panel by selecting them from the list on the left and dragging
them into the panel area:

a knob (dial) for setting the speed
a slider for setting the sensor_temp
a thermometer for displaying the air_temp
an LED for displaying the ice_warning
a graph for plotting air_temp vs speed over time

Arrange and size the elements to suit your taste. An example is shown below (in Edit Mode):

MESSINA Tutorial

Assystem Germany GmbH Page 25 of 69

The display elements have a pink background in the Edit Mode. This indicates that the control has not
been connected to a signal. The section on the right is used to set properties which apply to the
currently selected display element. Each element has a different list of properties. The above
properties are for the dial element which is selected. We want to use the dial to set the speed signal.

Make the following settings for the dial:

ShowSignalName: True
ShowSignalUnit: True
ShowSignalValue: True
MaximumRange: 140
MinimumRange: 0

Make the following settings for the slider:

ShowSignalName: True
ShowSignalUnit True
ShowSignalValue: True
MaximumRange: 20
MinimumRange: -10

Make the following settings for the thermometer:

ShowSignalName: True
ShowSignalUnit: True

MESSINA Tutorial

Assystem Germany GmbH Page 26 of 69

ShowSignalValue: True
MaximumRange: 20
MinimumRange: -10

Click on the LED. Set the ON and OFF colours to suite your taste. Remember, when the LED is ON,
this will indicate that the ice_warning is ON, so consider this when choosing the colours.

No changes are required for the graph element.

Connect Signals to the Elements

We now need to add signals to the elements so that they can be used to control the desired signals of
the TempComp model. Do this by marking the desired signal in Signalpool Manager view and
dragging it on to the desired element as follows:

drag the speed signal to the dial
drag the sensor_temp signal to the slider
drag the air_temp signal to the thermometer
drag the ice_warning signal to the LED
drag the air_temp signal to the graph
drag the speed signal to the graph

Note that the LED does not display a text. Add a label by dragging it from the element list on the left and
placing directly above the LED. Change the text setting to read "ice warning". Alternatively you can just
drag and drop a signal to the label to show its name.

Press the icon at the top of the visualization view to exit the Edit Mode. One final setting is
required before we can test our control panel. We will set the scale on the graph (this is not done in
Edit Mode). Double click on the speed signal in the legend under the graph display. The following
dialog appears:

MESSINA Tutorial

Assystem Germany GmbH Page 27 of 69

Set the minimum and maximum values to those used for the dial (0 and 140). Double click on the
air_temp signal in the legend under the graph display and set it to -10 and 20 (the same as the other
temperature display elements).

An example is shown below:

MESSINA Tutorial

Assystem Germany GmbH Page 28 of 69

Testing the TempComp Model

In the previous step we tested the model using the Table View Display. We will now do the same
using the panel we just finished creating. Connect the Control Panel visualization by pressing the

 icon. Make sure the target is connected, and then start the configuration as we did in the last step.

Take a bit of time to set different speed and sensor_temp values with the controls. Examine the
graph, the air_temp, and the ice_warning elements to convince yourself that the model is functioning
properly.

MESSINA Tutorial

Assystem Germany GmbH Page 29 of 69

Step 8 - Create and Program a Test Case

A Test Case must be defined and added to our project before we can execute a test. We must also
add the source code to it. Test cases are listed under the Test Cases folder in the Project Explorer.
We will add a Test Case to our temperature compensation example which will be used to monitor and
evaluate the compensated temperature. We will set a speed value and examine how the model reacts.
The steps to do this are described in detail in the following sections.

Add a Test Case

MESSINA Test Cases are created and edited using the Designer perspective which can be selected
using the tabs at the top right of the main window. Switch to the Designer perspective.

From the main menu, open the dialog File → New → Test Case. It is also possible to open the File
→ New → Other dialog and select the Test Case wizard in the MESSINA folder.

Alternatively, the Test Case Wizard can be called using Context Menu → New Wizards → Test
Case.

MESSINA Tutorial

Assystem Germany GmbH Page 30 of 69

The following dialog box appears when the Test Case Wizard is called:

MESSINA Tutorial

Assystem Germany GmbH Page 31 of 69

The Project pull-down list can be used to select the project where the Test Case is to be created. All
projects listed in the Project Explorer will be available in the pull-down list. The currently active project
is automatically set as the selected item. The Package text box can be used to group test cases. For
our temperature compensation example packages will not be used and the text box shall remain empty.

The File Name text box is used to enter the Test Case name. This will be the name of the source
code file which will be saved in the MESSINA project structure. A sample name is always generated
automatically, but this can be changed to any Test Case name that does not already exist in the
project. Enter MyTestCase as a test case name and press Finish to create the test case.

Note: Blank spaces are not allowed in the name.

When a new Test Case is created, the source file is created using the name entered above. The Test
Case is automatically added to the Test Case folder in the Project Explorer. The file is automatically
assigned a file type ".java" to indicate that it is a java source file. A source code template consisting of
an empty class is automatically generated as shown below.

MESSINA Tutorial

Assystem Germany GmbH Page 32 of 69

Now that a Test Case has been created, we can add the required source code to perform the actions

MESSINA Tutorial

Assystem Germany GmbH Page 33 of 69

required. The preCondition will be used to initialize our Test Case before it is executed, and the
postCondition to reset some values after execution is completed. Now we will Program the Test Case

About the preCondition and postCondition

The preCondition function is executed before the run function. It can be used, for example, to perform
an initialization or to make the required settings before a test can be executed. The postCondition
function is executed after the run function. It can be used, for example, to reset items that may have
been changed or to restore a default condition. The location of the preCondition, run, and
postCondition functions within the Test Case class does not matter. Thus, the execution order within
a Test Case will always be:

1. preCondition function
2. run function
3. postCondition function

What do we want to do?

We will use the TempComp model and our Test Case to perform the following operations:

1. initialize the speed and sensor_temp signal values (done in the preCondition function)
2. wait for the air_temp signal to be equal to the sensor_temp signal value (done in the

preCondition funtion)
3. set the speed signal directly in the source code to a fixed value (done in the run function)
4. wait for the air_temp signal to reach a value fixed in the source code (done in the run function)
5. reset the speed and sensor_temp values to zero (done in the postCondition)
6. wait for the air_temp signal to reach the sensor_temp signal value (done in the

postCondition)

This might sound like a whole lot to do, but we will use built-in functions to handle each operation. This
greatly simplifies programming Test Cases in MESSINA. Refer to the Using MESSINA → Creating
Tests → Signal Commands section of this documentation for a complete description of built-in
functions

Programming the preCondition Function

The Test Case is programmed using the Test Case Editor in the Java language. It is not required that
you be a Java expert to program a test case.

Signals available in the Signalpool are always available and can be referenced directly in the source
code. The following example source code shows how to set the speed and sensor_temp to 0 and 10
respectively and how to wait for the air_temp signal to reach the sensor_temp signal value using the
setValue, ASSERT, and waitValue built-in functions. This can be added to our preCondition function.

MESSINA Tutorial

Assystem Germany GmbH Page 34 of 69

// initialize values (speed = 0, sensor_temp = 10)

speed.setValue(0);

sensor_temp.setValue(10);

// wait until air_temp == sensor_temp == 10

ASSERT(air_temp.waitValue(10, 60000), "Timeout-preCondition");

The last line will cause the process to wait for the air_temp signal to be equal to the sensor_temp
signal. If this does not occur within the 60 second timeout, the "timeout-preCondition" message is
returned. This should never happen because the speed = 0, and the model will adjust the air_temp
until it reaches the sensor_temp value (no compensation is done when speed = 0). Refer to the
Using MESSINA → Creating Tests → Signal Commands section of this documentation for a
complete description of built-in functions.

Programming the run Function

Our run function will be used to set the speed signal value to 130 and then wait for the air_temp signal
to reach 5. These values are given directly in the source code. Note that we have also added a
timeout value of 30 seconds for the waitValue function.

// set speed value to 130

speed.setValue(130);

// wait for air_temp to reach 5

ASSERT(air_temp.waitValue(5, 30000), "Temperature not reached");

The last line performs a simple function. It waits for the air_temp signal value to reach the value 5. If
this does not occur within the timeout (set to 30 seconds), the "Temperature not reached" message
is returned. Refer to the Using MESSINA → Creating Tests → Signal Commands section of this
documentation for a complete description of built-in functions.

Programming the postCondition Function

MESSINA Tutorial

Assystem Germany GmbH Page 35 of 69

Add the following source code to the postCondition function:

// reset speed and sensor_temp signals

speed.setValue(0);

sensor_temp.setValue(0);

ASSERT(air_temp.waitValue(0, 60000),"Timeout-postCondition");

The signals are reset to 0, and we wait until air_temp and sensor_temp equal 0. If this does not
occur within the 60 second timeout, the "timeout-postCondition" message is returned.

The programming of our Test Case is now completed! Here is a picture of the completed Test Case:

MESSINA Tutorial

Assystem Germany GmbH Page 36 of 69

MESSINA Tutorial

Assystem Germany GmbH Page 37 of 69

We are now ready to execute the Test Case. This will be done in the next section.

MESSINA Tutorial

Assystem Germany GmbH Page 38 of 69

Step 9 - Execute the Test Case
In this section we will execute the previously created Test Case. We will use the Table View
visualization to examine the process while it is running. This will be done in the Executor perspective
with the Table View visualization selected and connected.

Execution of a Test Case - Table View

Make sure that the Table View visualization is being displayed and connected. You can connect

the visualization by pressing the icon at the top of the Table View visualizations view. Make sure
that the SiL target shown in the Target Manager is set as the default target. This can be done by
selecting the target, then calling the Context Menu → Set as Default Target. A small overlay icon

with a check mark indicates the currently selected default target.

Open the Test Case folder in the Project Explorer, mark the Test Case we created earlier
(MyTestCase in our example) and call the context menu. Select the Execute 1x on default target
option as shown in the following picture:

Watch the values in the Table View visualization and convince yourself that they react correctly. The
next section will perform the same operation but we will use the Control Panel we previously created
and its graph element to view the results. The process will be easier to following using a graph.

MESSINA Tutorial

Assystem Germany GmbH Page 39 of 69

Execution of a Test Case - Control Panel Graph

Select the Control Panel visualization by clicking on the correct tab in the visualization view and
make sure that it is connected by pressing the icon.

Open the Test Case folder in the Project Explorer, mark the Test Case we created earlier
(MyTestCase in our example) and call the context menu. Select the Execute 1x on default target
option as we did in the last section.

Watch the values in the graph and convince yourself that they react correctly. The graph should look
something like this:

What do we see?

The plot is flat before we start execution (speed = 0, air_temp = 0). Once the execution starts, the
air_temp signal begins to move the value of the sensor_temp signal (which we set to 10). This is the
preCondition function being executed. Once the condition air_temp = sensor_temp is fulfilled, the
preCondition function is complete and the run function is executed. The speed jumps to 130.
Because of the increase in speed, the model begins to compensate, this reduces the air_temp value.
Once the air_temp value reaches the value we set (air_temp = 5), the run function is completed and
the postCondition function is called which sets the speed and sensor_temp to 0. The model now
slowly moves the air_temp value to 0. Once there, the execution of our Test Case is completed.

Now, lets adjust the air_temp to a lower value. Modify the air_temp value in the Test Case so that
the value is 1 (previously it was 5). Execute the MyTestCase Test Case again. A graph that looks
something like this will be the result:

MESSINA Tutorial

Assystem Germany GmbH Page 40 of 69

The plot is flat before we start execution as expected. Once the execution starts, the air_temp signal
begins to move the value of the sensor_temp signal (preCondition function). Once the condition
air_temp = sensor_temp is fulfilled, the preCondition function is complete and the run function is
executed. So far, so good. The speed jumps to 130. The increase in speed causes the model to
compensate the air_temp value as happened before. After a short time, the air_temp signal stays
constant. This indicates that the model has fully compensated the air_temp for the speed value.
Remember we set the air_temp to 1, but the model stopped compensating at 4.2 (OK, I peeked at the
Table View to see the exact value). In other words, our air_temp value will never be reached. This is
why we have a timeout. Once the timeout is reached, the run function execution is ended, and the
postCondition is executed. We can see this because the speed goes to 0. The model then
compensates the air_temp value back to 0 (remember we set the sensor_temp value to 0 in the
postCondition function) before execution is completed.

MESSINA Tutorial

Assystem Germany GmbH Page 41 of 69

Step 10 - Create a Campaign and Add Parameters
Now that we have a Test Case we can add this to a Campaign which we will create and add to the
project. We will add the previously created Test Case to a Campaign to our temperature
compensation example which will be used to monitor and evaluate the compensated temperature. We
will now use Parameters to set a speed value instead of setting this directly as we did before. The
steps to do this are described in detail in the following sections.

Add a Campaign

A MESSINA Campaign is defined as a series of Test Cases performed in the order they are listed in
the Project Explorer. Campaigns are a flexible way of designing a complete test system. We will use
our temperature compensation example to demonstrate the creation and execution of a simple
Campaign. We will also use Parameters instead of fixed values in the code to test the model.

MESSINA Campaigns are also created and edited using the Designer perspective. From the main
menu, open the dialog File → New → Campaign. It is also possible to open the File → New → Other
dialog and select the Campaign wizard in the MESSINA folder.

Alternatively, the Test Case Wizard can be called using the Context Menu → New Wizards →
Campaign.

The Project pull-down list can be used to select the project where the Campaign is to be created. All

MESSINA Tutorial

Assystem Germany GmbH Page 42 of 69

projects listed in the Project Explorer will be available in the pull-down list. The currently active project
is automatically set as the selected item. It is possible to "nest" campaigns (have a campaign within
another campaign). If this is required, the Nested In box must be checked, and the location where the
new Campaign is to be created must be selected by hand. For our temperature compensation
example there will be no nested Campaigns.

The Campaign Name text box is used to enter the campaign name. This will be the name displayed in
the Project Explorer. A sample name is always generated automatically, but this can be changed to
any Campaign name that does not already exist in the project. Enter MyTestCampaign as the
campaign name and press Finish to create the Campaign.

Note: Blank spaces are not allowed in the name.

Adding Test Cases to the Campaign

Once the Campaign is created, the Test Cases can be added to the Campaign by marking the Test
Case and using drag-and-drop to add it to the Campaign item directly in the Project Explorer. Add
the same Test Case to the Campaign twice. We will use the 2 Test Cases with different parameters
to create different tests within our Campaign.

The MESSINA Project Explorer view now shows a Campaign containing two versions of the same
Test case and should look like this:

Adding Project Parameters

Now we will take a closer look at how Parameters can be used in MESSINA. This will be done from the
Designer perspective. We will add several parameters to our TempComp example to show how they

MESSINA Tutorial

Assystem Germany GmbH Page 43 of 69

are used and the flexibility that they offer compared to using fixed values as we did in the previous
step.

Parameters in the MESSINA development environment are like variables used within the MESSINA
project. Parameters can be set and used at different points in MESSINA. For example, you can add
Parameters in the Project Explorer view under the Parameter item (see below for details on how to
add parameters). This can be used, for example, to set Parameters to default values within a
MESSINA project. Parameters can also be used to set values for use only within a Campaign. It is
also possible to assign Parameters for use only within a given Test Case. This gives you a lot of
flexibility by enabling different tests to be performed using the same Test Case with different parameter
values.

The sections below will show how to add Parameters used to set default values. We will then create a
Campaign and add Parameters to the Campaign. We will add Parameters called timeout,
air_temp, and speed. These will be used to set signals within our Test Case (which will be added in
the next section), to compare a signal level, and to set a timeout for our Test Case.

In the Project Explorer window, add a parameter called speed by selecting the Parameter item and
calling Context Menu → New Parameter. The following dialog is called:

Enter the parameter Name as shown (speed in this case), the Type and Default Value can remain as
displayed. After pressing OK, the Parameter is added to the Project Explorer (expand the Parameter
item) and to the Parameter Manager window. Add Parameters for timeout and air_temp the same
way. The Project Explorer should now look like this:

MESSINA Tutorial

Assystem Germany GmbH Page 44 of 69

Setting Parameters for a Campaign

When a new Campaign is created (as we did in the previous section) a Campaign Parameters item
is automatically created under that Campaign name. Initially it will be empty. Double click on the
Campaign Parameters item, and the following dialog appears:

Notice that the Type and Default value of the Parameter are shown. The Default value is the value
we set when we created the Parameter for the project in the previous section.

Now, double click on the speed parameter in the list. The following dialog appears:

MESSINA Tutorial

Assystem Germany GmbH Page 45 of 69

This dialog allows us to set a New Value for the selected Parameter. The value set here will only be
valid within the Campaign where it is listed. For our temperature compensation example we will
require a different value for the speed Parameter. Set the New Value of the speed Parameter to
130.

Use the same procedure to add the timeout and air_temp Parameters to the Campaign. Make the
following settings:

Set timeout = 30000 (a value in milli-seconds)
Set air_temp = 5
Set speed = 130

We will use these settings within the first Test Case to perform our tests.

The Project Explorer view should have the project parameters and Campaign parameters. If you
expand the items, it should now look like this:

MESSINA Tutorial

Assystem Germany GmbH Page 46 of 69

To change a Parameter value within the Campaign, double click on the desired parameter and
change the value directly in the dialog box as shown below.

To remove a parameter from the Campaign, use the Context Menu → Un-override option. This
removes the Parameter from the Campaign only, the project Parameter remains unchanged.

Modify the Test Case to use Parameters

MESSINA Tutorial

Assystem Germany GmbH Page 47 of 69

We will use the TempComp model and our Test Cases to perform the following operations:

1. initialize the speed and sensor_temp signal values (same as before)
2. wait for the air_temp signal to be equal to the sensor_temp signal value (same as before)
3. set the speed signal to our speed parameter value (done in the run function)
4. wait for the air_temp signal to reach the air_temp parameter value (done in the run function)
5. reset the speed and sensor_temp values to zero (same as before)
6. wait for the air_temp signal to reach the sensor_temp signal value (same as before)

Again, we will use built-in functions to handle each operation.

Programming the preCondition Function

The preCondition function remains the same as before.

// initialize values (speed = 0, sensor_temp = 10)

speed.setValue(0);

sensor_temp.setValue(10);

// wait until air_temp == sensor_temp == 10

ASSERT(air_temp.waitValue(10, 60000), "Timeout-preCondition");

Modifying the run Function to use Parameters

Parameters are referenced by the "params." prefix. By typing "params." you can see a listing of all
parameters available. Use the arrow keys to move to the desired parameter.

Note: the Parameter values used will be those set within the Campaign (not the project default value
settings).

// set speed value to parameter

speed.setValue(params.speed);

// wait for air_temp to reach the parameter value

ASSERT(air_temp.waitValue(params.air_temp, params.timeout), "Temperature not reached");

MESSINA Tutorial

Assystem Germany GmbH Page 48 of 69

The fixed values we used before have now been replaced with the Parameters we created. These are
highlighted in the source code above for clarity. The operation of the run function remains unchanged.

Programming the postCondition Function

The postCondition function remains the same as before.

// reset speed and sensor_temp signals

speed.setValue(0);

sensor_temp.setValue(0);

ASSERT(air_temp.waitValue(0, 60000),"Timeout-postCondition");

The signals are reset to 0, and we wait until air_temp == sensor_temp == 0. If this does not occur
within the 60 second timeout, the "timeout-postCondition" message is returned.

The modified source code of our Test Case is now completed! Here is a picture of the completed Test
Case:

MESSINA Tutorial

Assystem Germany GmbH Page 49 of 69

MESSINA Tutorial

Assystem Germany GmbH Page 50 of 69

Setting Parameters for Each Test Case

Parameters can be set differently not only for each Campaign, but also for each Test Case. Now the
real power of Parameters comes into play. We will use this feature to create two different tests based
on the same Test Case, but using different parameters.

Double click on the first instance of the MyTestCase Test Case we created. The following dialog
appears:

These are the values we set for our Campaign. They are currently relevant for both the first and
second instance of the Test Case. Press OK, we do not need to change the parameters for the first
Test Case. Now double click on the second instance of MyTestCase within the Campaign. The same
dialog with the same values appears. Double click on the air_temp entry. The following dialog appears:

Set the New Value to 1 as shown above and press OK. The Project Explorer view should now look
like this:

MESSINA Tutorial

Assystem Germany GmbH Page 51 of 69

Now we have the parameters we created for our project with the assigned default values. We also
assigned different values to them for our MyTestCampaign Campaign. After that, we assigned a
different value to the air_temp parameter for the second instance of our MyTestCase Test Case.
This is summarized in the table below:

Parameter
Name

Value (Project/
default)

Value -
MyTestCampaign

Value -
MyTestCase (1)

Value -
MyTestCase(2)

speed 0 130 130 130

timeout 0 30000 30000 30000

air_temp 0 5 5 1

If a parameter is not assigned a new value for a Test Case, the value for the Campaign is used. If a
parameter is not assigned a new value for a Campaign, then the project parameter (default) value is
used. In our example, only the air_temp parameter was assigned a new value for the second instance
of our Test Case within the Campaign. To remove a parameter assignment, select the desired item
and use Context Menu → Un-override.

We are now ready to execute the Campaign.

MESSINA Tutorial

Assystem Germany GmbH Page 52 of 69

Step 11 - Execute the Campaign
In this section we will execute the previously created Test Campaign. We will use the Table View
and Control Panel visualizations to examine the process. This will be done in the Executor
perspective with the Table View visualization selected and connected.

What do we have?

We want to execute our Campaign with the settings and parameters added in the last step. We have
a Campaign with 2 Test Cases. The process (source code) is the same for each Test Case, but we
intentionally set a Parameter to a different value in the second Test Case. In other words, we want to
test different conditions without having to create or modify a Test Case.

Execution of a Campaign - Table View

Make sure that the Table View visualization is being displayed and that it is connected. You can

connect the visualization by pressing the icon at the top of the Table View visualization view.

Open the Campaign folder in the Project Explorer, mark the Campaign we created earlier
(MyTestCampaign in our example) and call the context menu. Select the Execute 1x on default
target option as shown in the following picture:

MESSINA Tutorial

Assystem Germany GmbH Page 53 of 69

Remember that we are now executing 2 separate Test Cases and that the second Test Case uses a
different parameter for the air_temp. The first Test Case will execute as before. The second Test
Case uses an air_temp parameter value that was selected so that the TempComp model will stop
compensating the value before it is reached. This causes the timeout condition we set in the run
function.

Watch the values in the Table View visualization and convince yourself that they react correctly. It is
much easier to examine the results using a graph so let's use the Control Panel visualization we
created earlier to do this again.

Execution of a Campaign - Control Panel Graph

Select the Control Panel visualization by clicking on the correct tab in the visualization view and
make sure that it is connected.

Open the Campaign folder in the Project Explorer, mark the Campaign we created earlier
(MyTestCampaign in our example) and call the context menu. Select the Execute 1x on default
target option as we did in the last section.

Watch the values in the graph and convince yourself that they react correctly. The graph should look
something like this:

MESSINA Tutorial

Assystem Germany GmbH Page 54 of 69

What do we see?

The same as before, but this time all in one process. The plot is flat before execution begins, then the
air_temp signal begins to move to the sensor_temp value. Once they are equal, the preCondition
function of the first Test Case is completed. The speed then jumps to the parameter value, the model
begins to compensate (reducing the air_temp value) as before. Once the air_temp parameter value is
reached, the run function is completed and the postCondition function is executed. The model
compensates the air_temp value to 0. Now, the second Test Case begins. The preCondition
function is the same, so the air_temp signal begins to move to the sensor_temp value. Once equal,
the speed jumps to the parameter value and the model compensation takes place. At some point, the
model stops compensating, but the air_temp parameter value is not reached. Eventually, the timeout
condition occurs, the speed goes to 0, and the model compensates the air_temp down to 0.

You might have noticed that something happened in the Result Manager view after each execution.
We will examine this more closely in the next section.

MESSINA Tutorial

Assystem Germany GmbH Page 55 of 69

Step 12 - The Result Manager
In this section we will take a closer look at the Result Manager view. This will be done in the Executor
perspective.

The Result Manager

The MESSINA Result Manager is a view used for displaying the result of a Test Case or Campaign
during and after execution. A tree structure/hierarchy is used to enable easy navigation through the
different processes and the different levels of each process. Each execution process will create a new
entry into the tree structure. The highest level of the structure identifies the Test Case or Campaign.
The name used is generated automatically using the project name, testenvironment name, and a time
stamp.

Expand the nodes in the Result Manager by clicking on the (+) next to each entry. Note that the name
of the Test Case source code file (MyTestCase.java in our example) is listed for each entry in the
Result Manager view. The parameters used for each Test Case execution are listed at the lowest
level of the tree structure. A colour coding is used to allow us to quickly identify the test result
(PASS/FAIL).

In the previous sections we executed our Test Case several times and we executed our Campaign.
Remember that we created a Test Case where the condition of air_temp == air_temp parameter
was not met (which was very easy because we only changed the Parameter). This resulted in the red
entries in the Result Manager display.

Your Result Manager view might look something like this:

MESSINA Tutorial

Assystem Germany GmbH Page 56 of 69

The above picture shows three executions:

The first is the execution of the Test Case where the parameters are set to allow a Pass result.

The second execution of the Test Case set the air_temp to a value that would not be reached.
This causes the timeout condition and results in a Fail result.

The third entry is the execution of the Campaign which executes the Test Case twice, but with 2
different sets of parameters (one has a Pass result, the other has a Fail result). Note that each
execution of the Test Case within the Campaign results in a separate branch in the tree
structure being created. This makes it very easy for us to follow the entire process step by step.

Each entry in the Result Manager will contain the Name, a test Result, the Date, and the Duration.

What can be done with the test results will be covered in the next steps.

MESSINA Tutorial

Assystem Germany GmbH Page 57 of 69

Step 13 - Test Results and Signal Traces
In this section we will take a closer look at how Test Results and Signal Traces are handled by
MESSINA. The actions described here are all performed in the Executor perspective.

Test Results

The Test Results folder shown in the Project Explorer gives a list of all results that were displayed in
the Result Manager and saved. To save the test results you must first make sure that the Result
Manager window has the focus. This can be done by clicking somewhere in the Result Manager
window. Then press the Save icon in the menu bar (or Main Menu → File → Save). The following
dialog box is called:

Select and press OK to save the results. In the next dialog you can add a comment to the test results,
then press the OK button.

A new item is added to the Test Results folder in the Project Explorer. This is the file where the test
results are saved. The file name is generated automatically and includes a time stamp.

MESSINA Tutorial

Assystem Germany GmbH Page 58 of 69

A new file can be generated for each set of test results as displayed in the Result Manager. Each
execution process (therefore each entry in the Result Manager) can be saved separately by marking
it and selecting Context Menu → Save. Each execution process can also be repeated by selecting
Context Menu → Rerun, which will result in a new execution process entry being made in the Result
Manager view. An existing set of test results can be expanded by executing another process which will
make another entry in the Result Manager window. The same test can be run repeatedly and saved
after each execution if required.

Signal Logging and Traces

Signal Logging is performed by adding a visualization and selecting the Signal Logger or MDF
Logger option from the visualization Type pull-down list.

MESSINA Tutorial

Assystem Germany GmbH Page 59 of 69

Both of these log the selected signal data, but in a different format. The Signal Logger type stores the
signal data in a standard ASCII format that is readable by any text editor program. MDF (Measurement
Data Format) is commonly used in the automobile industry. The MDF Logger type stores the signal in
the MDF format which can be used by external software for data viewing and analysis.

When a Logging process is being performed, MESSINA automatically adds an entry in the Signal
Traces folder displayed in the Project Explorer. For each Logging process (in MDF and ASCII
format), an entry is added. The entries shown here correspond to a data file which is created in the
MESSINA project structure.

Signals are added to the logger visualizations the same way as for a table display or Graph
visualization. Create 2 new visualizations, one a Signal Logger and the other an MDF Logger. Add
all 4 signals from the signalpool to both the Signal Logger and the MDF Logger. The visualization view
window should look like the picture below. The SignalLog and MDF_Log visualizations both look the
same, they simply list the signal that have been added to them.

Icons:

 Start Logging

 Stop Logging

 Remove all signals

MESSINA Tutorial

Assystem Germany GmbH Page 60 of 69

When the test is executed, a separate Signal Traces entry is made and a file will be created for the
SignalLog and MDF_Log containing the signal data and stored in the MESSINA project structure in a
sub-folder called Signal Traces. For our example, the data file path would be:

...\MESSINA\tutorial_workspace\MyFirstProject\Signal
Traces\ASCIISignalTraces_170224160406.log
...\MESSINA\tutorial_workspace\MyFirstProject\Signal
Traces\MDFSignalTraces_170224160408.mdf

The file names are generated automatically and always include a time stamp. The Project Explorer
now looks something like this:

Double clicking an entry in the Signal Traces will call the standard viewer to display the data. The
standard viewers must be set in the Main Menu → Window → Preferences section. For a detailed
description of the Signal Trace files, refer to the Traces and Logging section of this documentation.

MESSINA Tutorial

Assystem Germany GmbH Page 61 of 69

Step 14 - The Log View and Log Levels
In this section we will take a closer look at the Log View. This will be done in the Executor
perspective.

It is possible to do a visual logging of the test process using the built-in test settings. This allows us to
view logging information during a Test Case or Campaign execution process. Select Main Menu →
Window → Preferences then select Messina → Test Settings. The following dialog is displayed:

The Log level pull-down list can be used to set a log level. Click on the pull-down list and select Trace
to activate all logging operations. This setting will now be used as the default log level setting for all
Test Case and Campaign executions.

Now, execute the Campaign for our TempComp example project using the Context Menu →
Execute 1x on default target option. You will notice that the Log View automatically gets the focus in
the visualization section of the executor view.

The Log View displays information based on the Log Level setting. There is one Log View for each
target. In our case, this will be the SiL target. The logging information is written to the Log View
continually during a running test process. The TempComp example Campaign was executed once

MESSINA Tutorial

Assystem Germany GmbH Page 62 of 69

with the Log Level set to Trace to create the following output.

The information displayed in the Log View is not saved to a file. It is intended as information to be
displayed during a running test process. The Log View is a text display so we can mark, copy, and
save the information to another file (e.g. to a text editor program) if required. The information displayed
is currently limited to approx. 10k of data. Once this limit is reached, the oldest information is discarded
when new information is added.

Log Levels

Execute the Campaign again, but this time use the Context Menu → Execute option. The following
dialog is called:

MESSINA Tutorial

Assystem Germany GmbH Page 63 of 69

Notice that a Log level pull-down list is available and it is set to the option that we set in the
preferences earlier. The Log level pull-down list can be used to override the default setting for this
execution process only. Press OK and let the execution run again. Try changing the Log level and
examine what effect this has on the output.

The Log level settings are cumulative. This means all options including and below the selected option
are also active. For example, if the Debug option is selected, this would mean that the Info, Warning,
Error, and Fatal options are also active. The following table summarizes the log levels:

MESSINA Tutorial

Assystem Germany GmbH Page 64 of 69

Log
Level

Test Case Constant
Name

Description

Trace LogLevel.TRACE logs the stage (e.g. pre-condition, run, post-condition) and
signal changes

Debug LogLevel.DEBUG User defined logging of messages and values in the Test Case
(e.g. function call:

log(ITargetLogger.DEBUG, "hello")

Info LogLevel.INFO logs the test status (e.g. done) and the return value

Warning LogLevel.WARNING makes a log entry when a "wait" operation fails (e.g.
waitTrigger, waitValue)

Error LogLevel.ERROR makes a log entry when an error occurs

Fatal LogLevel.FATAL

makes a log entry when a fatal error (exceptions) occurs

Off
(default)

- nothing is logged

Log Levels in Test Cases

As you can see from the table above, it is possible to access the Log level in the Test Case using
either a discrete value or a pre-defined constant.

Switch to the Designer perspective and modify the Test Case by adding the following line of code in
the run function just before the return 0; line:

air_temp.logValue(LogLevel.TRACE);

Now add the following line to the preCondition and postCondition functions respectively, again just
before the return 0 line:

log(LogLevel.TRACE, "pre-condition done");

log(LogLevel.TRACE, "post-condition done");

These lines are designed to force an output to the Log View when the process is executed. The Log
Level is set to Trace so that the value or message is always displayed.

MESSINA Tutorial

Assystem Germany GmbH Page 65 of 69

Execute the Campaign again using the Context Menu → Execute option with the Log Level set to
Trace. Examine the text in the Log View to confirm that each of the newly added log items is
displayed. The Log View should look something like this:

MESSINA Tutorial

Assystem Germany GmbH Page 66 of 69

Step 15 - Test Reports
One requirement of any test system is always a Test Report. Sometimes it is necessary to have
information printable for reviewing or archiving if required. MESSINA handles this with a built-in report
generator.

Test Reports

In order to view a report, a style sheet must be assigned. This must be set in the Main Menu
→ Window → Preferences section. See the Preferences section of this documentation for a detailed
description of how to set the Preferences.

Test Reports are created from Test Results that have been saved. To save the test results, select
the Result Manager view by clicking in it and press the save icon. Double click the result file created in
the previous steps (listed in the Test Results folder). A report that looks similar to the one shown
below should appear in the Visualization view.

Test Report

File generated by user at 30.06.11 11:00:00

Project: MyFirstProject

Configuration: XiL

 TempComp_Windows (Matlab Simulink) 3.1.0.10986 (1.229)

Target:

 Windows (local) (Windows) 3.1.0.10986 / Windows 5.1 (3.0) 1 VM 3.1.0.10986

Comments:

Statistics

Successful 50,00 %

MESSINA Tutorial

Assystem Germany GmbH Page 67 of 69

Failures 50,00 %

Errors 0,00 %

Inconclusive 0,00 %

Tests 2

Successful Tests

Test name Test group Time of test Duration Comments

MyTestCase.java
(<default>)

/MyTestCampaign 30.06.2011
21:11:55

0:00:41.579

Go to top

Failed tests

Test name Test group Time of
test

Duration Comments

MyTestCase.java
(<default>)

/MyTestCampaign 30.06.2011
21:12:37

0:00:57.095 Assertion failed:
Temperature not reached
(MyTestCase.java:14)

Go to top

Error tests
No error tests.
Go to top

Test Results Info
1 MyTestCampaign

Result: FAILED

Start: 30.06.2011 21:11:55

Duration: 0:01:38.674

Comments: Total 2; Successful 1

MESSINA Tutorial

Assystem Germany GmbH Page 68 of 69

The format of the report is standardized so it will always have the same layout.

MESSINA Tutorial

Assystem Germany GmbH Page 69 of 69

	Inhaltsverzeichnis
	Tutorial
	Example: Temperature Compensation
	Test Case Description

	Step 1 - Prepare the Test
	Step 2 - Create New Project
	Step 3 - Add Model and Configuration
	Add a System Configuration to the Testenvironments
	Add a Matlab/Simulink Model to the Configuration

	Step 4 - Adding Signals to the Signalpool
	Add Signals to the Signalpool

	Step 5 - Add, Configure and Start a Target
	Add and Configure a Target

	Step 6 - Add a Visualization and Test Model
	Add a Table Viewer Visualization
	Testing the TempComp Model

	Step 7 - Add a Control Panel Visualization
	Add a Control Panel Visualization
	Connect Signals to the Elements
	Testing the TempComp Model

	Step 8 - Create and Program a Test Case
	Add a Test Case
	About the preCondition and postCondition
	What do we want to do?
	Programming the preCondition Function
	Programming the run Function
	Programming the postCondition Function

	Step 9 - Execute the Test Case
	Execution of a Test Case - Table View
	Execution of a Test Case - Control Panel Graph
	What do we see?

	Step 10 - Create a Campaign and Add Parameters
	Add a Campaign
	Adding Test Cases to the Campaign
	Adding Project Parameters
	Setting Parameters for a Campaign
	Modify the Test Case to use Parameters
	Programming the preCondition Function
	Modifying the run Function to use Parameters
	Programming the postCondition Function
	Setting Parameters for Each Test Case

	Step 11 - Execute the Campaign
	What do we have?
	Execution of a Campaign - Table View
	Execution of a Campaign - Control Panel Graph
	What do we see?

	Step 12 - The Result Manager
	The Result Manager

	Step 13 - Test Results and Signal Traces
	Test Results

	Step 14 - The Log View and Log Levels
	Log Levels
	Log Levels in Test Cases

	Step 15 - Test Reports
	Test Reports

